摘 要:本文介紹一種采用雙過(guò)零投切的復(fù)合開關(guān)技術(shù),多機(jī)并聯(lián)協(xié)調(diào)控制策略的智能電容補(bǔ)償裝置,從而實(shí)現(xiàn)低成本、高可靠性低壓無(wú)功補(bǔ)償,降低線路損耗。實(shí)驗(yàn)波形也證實(shí)了該技術(shù)的準(zhǔn)確性和實(shí)用性。
關(guān)鍵詞:無(wú)功補(bǔ)償;復(fù)合開關(guān);過(guò)零投切;節(jié)能
1、引言
在配電系統(tǒng)中,低壓電容器是一種應(yīng)用非常廣泛的無(wú)功補(bǔ)償設(shè)備,其安全可靠運(yùn)行對(duì)配電系統(tǒng)的正常供電 起著關(guān)鍵作用。
目前無(wú)功補(bǔ)償裝置種類繁多。傳統(tǒng)的低壓補(bǔ)償裝置通常采用交流接觸器作為投切開關(guān),電容器投入時(shí)會(huì)產(chǎn) 生涌流,觸頭易粘結(jié)且不易拉開。之后,出現(xiàn)了晶閘管開關(guān),它具有電壓過(guò)零導(dǎo)通、電流過(guò)零關(guān)斷能力,能限制合閘涌流,但導(dǎo)通時(shí)會(huì)出現(xiàn)導(dǎo)通壓降,產(chǎn)生較大損耗和發(fā)熱現(xiàn)象。為解決此問(wèn)題,又岀現(xiàn)了復(fù)合開關(guān),它由晶閘管、交流接觸器并聯(lián)組成,具有兩種開關(guān)的優(yōu)勢(shì),但正常運(yùn)行時(shí)交流接觸器的線圈需一直通電,增加了線路損耗。而新的復(fù)合投切開關(guān)則采用磁保持繼電器來(lái)代替交流接觸器與晶閘管并聯(lián),其通過(guò)CPU控制器在電壓零點(diǎn)投入實(shí)現(xiàn)電容器無(wú)涌流并入配電網(wǎng),在電流零點(diǎn)斷開實(shí)現(xiàn)無(wú)電弧斷開電容器。這樣能夠增強(qiáng)復(fù)合開關(guān)的使用使命。智能電容補(bǔ)償裝置是以若干臺(tái)Y型或三角型聯(lián)結(jié)的低壓電容器為主體,釆用微電子技術(shù)、數(shù)字通信技術(shù)、傳感器技術(shù)、電力電子技術(shù)等技術(shù)成果,將其集成、智能化,通過(guò)對(duì)其運(yùn)行參數(shù)的實(shí)時(shí)監(jiān)測(cè)實(shí)現(xiàn)了故障自診斷功能,采用低功耗磁保持繼電器實(shí)現(xiàn)復(fù)合投切,多臺(tái)電容器通過(guò)并聯(lián)方式按控制要求投切,實(shí)現(xiàn)無(wú)功自動(dòng)補(bǔ)償,并具備了三相欠壓、過(guò)壓、過(guò)流、缺相等保護(hù)。能很好地適應(yīng)現(xiàn)代低壓配電網(wǎng)對(duì)無(wú)功補(bǔ)償?shù)男枨蟆?/p>
2、硬件結(jié)構(gòu)
智能電容補(bǔ)償裝置的硬件主要由檢測(cè)電路、電源模塊、CPU控制器、電容器本體及外圍電氣設(shè)備組成,硬 件結(jié)構(gòu)框圖如圖1所示。智能電容補(bǔ)償裝置采用飛思卡爾K60作為主處理器,通過(guò)A/D采樣三相電壓、電流,并實(shí)時(shí)計(jì)算相關(guān)電氣量,根據(jù)相應(yīng)的控制策略控制投切開關(guān),實(shí)現(xiàn)對(duì)低壓配電網(wǎng)的無(wú)功補(bǔ)償。
2.1 CPU控制器
CPU控制器是智能電容補(bǔ)償裝置的控制“大腦”,其主控芯片采用飛思卡爾的芯片K60。工作頻率達(dá)到150MHz。整個(gè)處理器集信號(hào)調(diào)理、電網(wǎng)頻率跟蹤、數(shù)據(jù)采集、算法處理、數(shù)據(jù)存儲(chǔ)為一體,可及時(shí)計(jì)算出無(wú)功功率、功率因數(shù)、電容值等參數(shù),并將參數(shù)存入?yún)?shù)寄存器,實(shí)現(xiàn)運(yùn)行參數(shù)的實(shí)時(shí)測(cè)量和數(shù)字化。智能電容補(bǔ)償裝置控制結(jié)構(gòu)框圖如圖1、2所示。
2.2復(fù)合投切開關(guān)設(shè)計(jì)
低功耗復(fù)合投切開關(guān)是智能電容補(bǔ)償裝置的重要組成部件,由晶閘管、磁保持繼電器、RC吸收電路以及光隔電路組成。低功耗復(fù)合開關(guān)通過(guò)CPU控制器在電壓零點(diǎn)投入實(shí)現(xiàn)電容器無(wú)涌流并入配電網(wǎng),在電流零點(diǎn)斷開實(shí)現(xiàn)無(wú)電弧斷開電容器。在投入時(shí),先投入晶閘管,再投入磁保持繼電器;斷開時(shí),先斷開磁保持繼電器,再關(guān)斷晶閘管。開關(guān)在投切過(guò)程中,晶閘管導(dǎo)通工作,投切完成后由磁保持繼電器維持通斷狀態(tài)。復(fù)合開關(guān)結(jié)構(gòu)框圖如圖3所示。
在電容器投切過(guò)程中,復(fù)合開關(guān)的動(dòng)作順序如下:
投入過(guò)程:先導(dǎo)通晶閘管,再導(dǎo)通磁保持繼電器,再關(guān)斷晶閘管。這樣能夠保證電容器無(wú)涌流投入,同時(shí)在電容器接入電網(wǎng)運(yùn)行時(shí)復(fù)合開關(guān)的功耗較低。
斷開過(guò)程: 先導(dǎo)通晶閘管,再切開磁保持繼電器,后關(guān)斷晶閘管。這樣能夠保證電容器在電流為零時(shí)從電網(wǎng)中斷開實(shí)現(xiàn)滅弧功能,增強(qiáng)復(fù)合開關(guān)的使用使命。
3、軟件設(shè)計(jì)
3.1控制策略
用戶根據(jù)實(shí)際負(fù)載情況,設(shè)置目標(biāo)功率因數(shù)和允許的無(wú)功功率占有功功率的比例值。以功率因數(shù)為首要目標(biāo),計(jì)算出要達(dá)到目標(biāo)功率因數(shù)所需投入或切除的無(wú)功容量并進(jìn)行電容器的投切,當(dāng)功率因數(shù)滿足條件時(shí),計(jì)算無(wú)功功率是否滿足條件,如果不滿足條件,根據(jù)所需投入或切除的無(wú)功容量繼續(xù)進(jìn)行電容器的投切,克服了滿足功率因數(shù)條件但無(wú)功功率仍很大的弊端。由于兩者都是以無(wú)功功率為控制量,因此避免了“投切震蕩“情況的發(fā)生。
控制策略圖如圖4所示,U上、U下表示電壓上限、下限;U上1=U上—U死區(qū),U下1=U下-U死區(qū),死區(qū)值是防止投切震蕩值,2區(qū)和5區(qū)是防震蕩區(qū)域。投切控制如下:
0區(qū):不需要補(bǔ)償;
1區(qū):此時(shí)不考慮無(wú)功功率Q的大小,將電容器按照容量從小到大的順序逐個(gè)切除,直到全部切除為止;
2區(qū):投切震蕩區(qū),只切不投,考慮容性無(wú)功功率Q, 若計(jì)算所需切除的電容器容量大于投入的電容器容量,則將電容器切除,否則電容器不動(dòng)作;
3區(qū):投入相應(yīng)容量的電容器;
4區(qū):切除相應(yīng)容量的電容器;
5區(qū):只投不切,考慮感性無(wú)功功率Q ,若計(jì)算所需投入的電容容量大于未投入的電容器容量,則將電容 器投入,否則電容器不動(dòng)作;
6區(qū):此時(shí)不考慮無(wú)功功率Q的大小,將電容器按照容量從小到大的順序逐個(gè)投入,直到全部投入為止。
裝置記錄記錄電容器的投切次數(shù)和投切時(shí)間。在投切過(guò)程中,不同容量的按值投切;同容量的投切次數(shù)小 的先投,投切次數(shù)大的先切;同等投切次數(shù)下,投切時(shí)間小的先投,以保證電容的壽命和利用率達(dá)到較大。
3.2主從切換
多個(gè)智能電容補(bǔ)償裝置級(jí)聯(lián),裝置具備自動(dòng)分配主機(jī)和從機(jī)功能。原則上,每個(gè)裝備分配不同的設(shè)備號(hào), 每個(gè)設(shè)備號(hào)具有不同的優(yōu)先級(jí),默認(rèn)設(shè)備號(hào)小的裝置優(yōu)先級(jí)較高,通過(guò)發(fā)送廣播報(bào)文的時(shí)間間隔來(lái)確定主從,具體實(shí)現(xiàn)流程如圖5所示。
主機(jī)實(shí)時(shí)向各從機(jī)發(fā)送查詢命令,從機(jī)向主機(jī)返回各從機(jī)的工作方式(三相共補(bǔ)或分補(bǔ))、電容器的容量、 投切狀態(tài)、投切時(shí)間等信息。
3.3軟件設(shè)計(jì)流程
軟件設(shè)計(jì)主要包括兩部分,一是內(nèi)部的數(shù)據(jù)處理、 控制策略、保護(hù)功能、數(shù)據(jù)存儲(chǔ)等,二是外部數(shù)據(jù)接口,包括通信、按鍵、顯示等功能。軟件設(shè)計(jì)流程如圖6所示。
4、實(shí)驗(yàn)結(jié)果分析
搭建無(wú)功補(bǔ)償實(shí)驗(yàn)平臺(tái),用20kW+12kVar RLC負(fù)載箱模擬負(fù)荷,改變負(fù)荷無(wú)功和功率因數(shù),選擇10kVar分補(bǔ)電容和(10+10)kVar共補(bǔ)電容組成級(jí)聯(lián)裝置,實(shí)驗(yàn)平臺(tái)如圖7所示。
采用接觸器作為投切開關(guān)時(shí),電容器投入電網(wǎng)產(chǎn)生了較大的涌流,達(dá)到電流峰值5倍以上,波形如圖8所 示。采用文中低功耗復(fù)合開關(guān)作為投切開關(guān)時(shí),電容器投入電網(wǎng)產(chǎn)生的涌流較小,是電流峰值的1.5倍,波形如圖9所示。圖10所示的是采用復(fù)合開關(guān)電容器從電網(wǎng)中切除的電流波形,沒(méi)有拉弧現(xiàn)象。
4.1級(jí)聯(lián)裝置投切試驗(yàn)
設(shè)置負(fù)荷有功為5kW,無(wú)功為12kVar,功率因數(shù)偏低條件下。實(shí)驗(yàn)結(jié)果如表1所示。調(diào)整模擬負(fù)荷參數(shù), 在功率因數(shù)正常條件下,實(shí)驗(yàn)結(jié)果如表2所示。
4.2小結(jié)
實(shí)驗(yàn)選取了兩個(gè)比較典型的電容器投切實(shí)驗(yàn),充分驗(yàn)證了控制算法的正確性,能夠?qū)崿F(xiàn)電容器的準(zhǔn)確投切。 結(jié)果表明智能電容補(bǔ)償裝置可以使電網(wǎng)減少對(duì)系統(tǒng)提供無(wú)功功率,從而降低線路的傳輸電流,實(shí)現(xiàn)降低線損。
5、結(jié)束語(yǔ)
本文設(shè)計(jì)以低功耗復(fù)合開關(guān)為核心的智能電容補(bǔ)償裝置,以K60為控制主芯片實(shí)現(xiàn)電壓、電流等參數(shù)的計(jì) 算。在傳統(tǒng)的九區(qū)圖控制策略基礎(chǔ)上,設(shè)置電壓投切震蕩死區(qū)值,解決因投切震蕩導(dǎo)致的電容器頻繁投切問(wèn)題。 多臺(tái)裝置組網(wǎng)運(yùn)行時(shí),裝置具備自動(dòng)主從分配功能,省去了傳統(tǒng)的控制器設(shè)備,具有成本低、應(yīng)用靈活,且能實(shí)現(xiàn)電容器快速、準(zhǔn)確投切的優(yōu)點(diǎn)。實(shí)驗(yàn)結(jié)果表明,設(shè)備的投運(yùn)可以達(dá)到降低線路損耗的目的。
6、安科瑞智能電容器介紹
6.1 電容投切原理
用戶根據(jù)實(shí)際負(fù)載情況,設(shè)置目標(biāo)功率因數(shù)和允許的無(wú)功功率占有功功率的比例值。以功率因數(shù)為首要目標(biāo),計(jì)算出要達(dá)到目標(biāo)功率因數(shù)所需投入或切除的無(wú)功容量并進(jìn)行電容器的投切;當(dāng)功率因數(shù)滿足條件時(shí),計(jì)算無(wú)功功率是否滿足條件,如果不滿足條件,根據(jù)所需投入或切除的無(wú)功容量繼續(xù)進(jìn)行電容器的投切,克服了滿足功率因數(shù)條件但無(wú)功功率仍很大的弊端。由于兩者都是以無(wú)功功率為控制量,因此避免了“投切震蕩”情況的發(fā)生。
6.2產(chǎn)品介紹
6.2.1 AZC系列智能電力電容補(bǔ)償裝置由智能測(cè)控單元、投切開關(guān)、線路保護(hù)單元、低壓電力電容器等構(gòu)成,改變了傳統(tǒng)無(wú)功補(bǔ)償裝置體積龐大和笨重的結(jié)構(gòu)模式,是用于節(jié)省能源、降低線損、提高功率因數(shù)和電能質(zhì)量的新一代無(wú)功補(bǔ)償設(shè)備。
6.2.2 AZCL系列智能集成式諧波抵制電力電容補(bǔ)償裝置是應(yīng)用于0.4kV、50Hz低壓配電中用于節(jié)省能源、降低線損、提高功率因數(shù)和電能質(zhì)量的新一代無(wú)功補(bǔ)償設(shè)備。其中串接7%電抗器的產(chǎn)品使用于主要諧波為5次、7次及以上的電氣環(huán)境,串接14%電抗器的產(chǎn)品使用于主要諧波為3次及以上的電氣環(huán)境。
6.2.3 技術(shù)參數(shù)
?、侪h(huán)境條件
海拔高度:≤2000米
環(huán)境溫度:-25~55℃
相對(duì)濕度:40℃,20~90%
大氣壓力:79.5~106.0Kpa
周圍壞境無(wú)導(dǎo)電塵埃及腐蝕性氣體,無(wú)易燃易爆的介質(zhì)
?、陔娫礂l件
額定電壓:AC220V(AZC)或AC380V(AZC/AZCL)
允許偏差:±20%
電壓波形:正弦波,總畸變率不大于5%
工頻頻率:48.5~51.5Hz
功率消耗:<0.5W(切除電容器時(shí)),<1W(投入電容器時(shí))
?、郯踩?/p>
滿足《DL/T842-2003》低壓并聯(lián)電容器裝置使用技術(shù)條件中對(duì)應(yīng)條款要求。
④保護(hù)誤差
電壓:≤0.5%
電流:≤1.0%
溫度:±1℃
時(shí)間:±0.01s
?、轃o(wú)功補(bǔ)償參數(shù)
無(wú)功補(bǔ)償誤差:≤電容器容量的75%
電容器投切時(shí)隔:>10s
無(wú)功容量:?jiǎn)闻_(tái)≤(20+20)kvar
?、蘅煽啃詤?shù)
控制準(zhǔn)確率:*
電容器容量運(yùn)行時(shí)間衰減率:≤1%/年
電容器容量投切衰減率:≤0.1%/萬(wàn)次
年故障率:0.1%
6.2.4 優(yōu)勢(shì)
AZC/AZCL系列智能電容器本體采用品牌特制干式自愈式電容器,無(wú)泄漏、整體阻燃防暴、綠色環(huán)保、年衰減率小。產(chǎn)品標(biāo)準(zhǔn)化、模塊化,取代了傳統(tǒng)的空氣開關(guān)、交流接觸器、可控硅、熱繼電器、電容器,將其功能合為一個(gè)整體,發(fā)熱量小,組屏安裝的時(shí)候采用積木堆積方式,電容器損壞時(shí)只需單體簡(jiǎn)單快速更換。產(chǎn)品體積小、接線簡(jiǎn)單,隨著用電用戶電力負(fù)荷的增加,可以隨時(shí)增加電容器的數(shù)量,改變了常規(guī)模式因接線復(fù)雜,一成不變的局限性,適應(yīng)企業(yè)發(fā)展的需要,可以分期投資。
保障系統(tǒng)電壓穩(wěn)定合格,提高功率因數(shù),對(duì)投入電容器進(jìn)行預(yù)測(cè),若投入電容器過(guò)補(bǔ),則不投入,避免無(wú)功超額而罰款;控制可靠性*,提高配變有功出力,減少增容投資降損節(jié)能。
【參考文獻(xiàn)】
陳元招.零投切開關(guān)的智能低壓電力電容器設(shè)計(jì)[J].低壓電器,2010,(10):16-20
周強(qiáng),陳琛,歐傳剛,楊濤.一種基于低功耗復(fù)合投切開關(guān)的智能電容補(bǔ)償方法[J].《自動(dòng)化技術(shù)與應(yīng)用》2017年第36卷第6期
安科瑞企業(yè)微電網(wǎng)設(shè)計(jì)與應(yīng)用手冊(cè).2019.11版
安科瑞電能質(zhì)量監(jiān)測(cè)與治理選型手冊(cè).2019.11版